Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (2)
Book Image

Mastering Graphics Programming with Vulkan

5 (2)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback but learning it can be a daunting challenge due to its low-level, complex nature. Mastering Graphics Programming with Vulkan is designed to help you overcome this difficulty, providing a practical approach to learning one of the most advanced graphics APIs. In Mastering Graphics Programming with Vulkan, you’ll focus on building a high-performance rendering engine from the ground up. You’ll explore Vulkan’s advanced features, such as pipeline layouts, resource barriers, and GPU-driven rendering, to automate tedious tasks and create efficient workflows. Additionally, you'll delve into cutting-edge techniques like mesh shaders and real-time ray tracing, elevating your graphics programming to the next level. By the end of this book, you’ll have a thorough understanding of modern rendering engines to confidently handle large-scale projects. Whether you're developing games, simulations, or visual effects, this guide will equip you with the skills and knowledge to harness Vulkan’s full potential.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Replacing multiple fences with a single timeline semaphore

In this section, we are going to explain how fences and semaphores are currently used in our renderer and how to reduce the number of objects we must use by taking advantage of timeline semaphores.

Our engine already supports rendering multiple frames in parallel using fences. Fences must be used to ensure the GPU has finished using resources for a given frame. This is accomplished by waiting on the CPU before submitting a new batch of commands to the GPU.

Figure 5.1 – The CPU is working on the current frame while the GPU is rendering the previous frame

Figure 5.1 – The CPU is working on the current frame while the GPU is rendering the previous frame

There is a downside, however; we need to create a fence for each frame in flight. This means we will have to manage at least two fences for double buffering and three if we want to support triple buffering.

We also need multiple semaphores to ensure the GPU waits for certain operations to complete before moving on. For instance, we...