Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (2)
Book Image

Mastering Graphics Programming with Vulkan

5 (2)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback but learning it can be a daunting challenge due to its low-level, complex nature. Mastering Graphics Programming with Vulkan is designed to help you overcome this difficulty, providing a practical approach to learning one of the most advanced graphics APIs. In Mastering Graphics Programming with Vulkan, you’ll focus on building a high-performance rendering engine from the ground up. You’ll explore Vulkan’s advanced features, such as pipeline layouts, resource barriers, and GPU-driven rendering, to automate tedious tasks and create efficient workflows. Additionally, you'll delve into cutting-edge techniques like mesh shaders and real-time ray tracing, elevating your graphics programming to the next level. By the end of this book, you’ll have a thorough understanding of modern rendering engines to confidently handle large-scale projects. Whether you're developing games, simulations, or visual effects, this guide will equip you with the skills and knowledge to harness Vulkan’s full potential.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Adding a separate queue for async compute

In this section, we are going to illustrate how to use separate queues for graphics and compute work to make full use of our GPU. Modern GPUs have many generic compute units that can be used both for graphics and compute work. Depending on the workload for a given frame (shader complexity, screen resolution, dependencies between rendering passes, and so on), it’s possible that the GPU might not be fully utilized.

Moving some of the computation done on the CPU to the GPU using compute shaders can increase performance and lead to better GPU utilization. This is possible because the GPU scheduler can determine if any of the compute units are idle and assign work to them to overlap existing work:

Figure 5.3 – Top: graphics workload is not fully utilizing the GPU; Bottom: compute workload can take advantage of unused resources for optimal GPU utilization

Figure 5.3 – Top: graphics workload is not fully utilizing the GPU; Bottom: compute workload can take advantage of unused resources for optimal GPU utilization

In the remainder of this section, we are going...