Book Image

Learning ROS for Robotics Programming

By : Aaron Martinez, Enrique Fernández
Book Image

Learning ROS for Robotics Programming

By: Aaron Martinez, Enrique Fernández

Overview of this book

<p>Both the amateur and the professional roboticist who has ever tried their hand at robotics programming will have faced with the cumbersome task of starting from scratch, usually reinventing the wheel. ROS comes with a great number of already working functionalities, and this book takes you from the first steps to the most elaborate designs possible within this software framework.</p> <p>"Learning ROS for Robotics Programming" is full of practical examples that will help you to understand the framework from the very beginning. Build your own robot applications in a simulated environment and share your knowledge with the large community supporting ROS.</p> <p>"Learning ROS for Robotics Programming" starts with the basic concepts and usage of ROS in a very straightforward and practical manner. It is a painless introduction to the fascinating world of robotics, covering sensor integration, modeling, simulation, computer vision, and navigation algorithms, among other topics.</p> <p>After the first two chapters, concepts like topics, messages, and nodes will become daily bread. Make your robot see with HD cameras, or navigate avoiding obstacles with range sensors. Furthermore, thanks to the contributions of the vast ROS community, your robot will be able to navigate autonomously, and even recognize and interact with you, in a matter of minutes.</p> <p>"Learning ROS for Robotics Programming" will give you all the background you need to know in order to start in the fascinating world of robotics and program your own robot. Simply, you put the limit!</p>
Table of Contents (16 chapters)
Learning ROS for Robotics Programming
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

About the Reviewers

Luis Sánchez Crespo has completed his dual Master's degree in Electronics and Telecommunication Engineering at the University of Las Palmas de Gran Canaria. He has collaborated with different research groups as the Institute for Technological Development and Innovation (IDETIC), the Oceanic Platform of Canary Islands (PLOCAN), and the Institute of Applied Microelectronics (IUMA) where he actually researches on imaging super-resolution algorithms.

His professional interests lie in computer vision, signal processing, and electronic design applied on robotics systems. For this reason, he joined the AVORA team, a group of young engineers and students working on the development of Underwater Autonomous Vehicles (AUV) from scratch. Inside this project, Luis has started developing acoustic and computer vision systems, extracting information from different sensors such as hydrophones, SONAR, or camera. He has also been involved in the electronic design of the vehicle. Finally, he has played the Team Leader role during the preparation of the SAUC-E'13 challenge.

With a strong background gained in marine technology, Luis joined Biomecan, a young startup, where he works on developing remotely operated and autonomous vehicles for aquatic environments.

He is very enthusiastic and an engineer in multiple disciplines. He is responsible for his work. He can manage himself and can take up responsibilities as a Team Leader, as demonstrated at the SAUC-E competition directing the AVORA team. His background in electronics and telecommunications allows him to cover a wide range of expertise from signal processing and software, to electronic design and fabrication.

He has focused his career in 2D and 3D signal processing, with the development of a system for tracking and detecting signs of exhaustion and the risk of falling asleep in drivers. After this successful research, he started working on two different projects at the same time. The first of these projects focused mainly on achieving video sequences enhancement applying super-resolution. The second project, and one of his most important achievements, was participating in the development of an autonomous underwater vehicle for the Students Autonomous Underwater Challenge-Europe (SAUC-E) in which his team achieved great recognition with the fourth most important prize. In his second year, he took up the mantle of Team Leader, again being recognized by his work during competition.

Matthieu Keller is a French student who has completed several internships in development, system administration, and cyber security. His education is mainly in Computer Science and Robotics, but he enjoys all kinds of scientific topics.

Damian Melniczuk graduated with Physics from the Wrocław University of Technology, where he currently works in the quantum cryptography laboratory. Apart from using photons for transporting encryption keys, he is also involved in hacker culture and open source movement. His current projects are: setting up Wroclaw Hackerspace (http://hswro.org/) and building an open source modular home automation system (http://openhomeautomation.blogspot.com/).