Book Image

FPGA Programming for Beginners

By : Frank Bruno
5 (1)
Book Image

FPGA Programming for Beginners

5 (1)
By: Frank Bruno

Overview of this book

Field Programmable Gate Arrays (FPGAs) have now become a core part of most modern electronic and computer systems. However, to implement your ideas in the real world, you need to get your head around the FPGA architecture, its toolset, and critical design considerations. FPGA Programming for Beginners will help you bring your ideas to life by guiding you through the entire process of programming FPGAs and designing hardware circuits using SystemVerilog. The book will introduce you to the FPGA and Xilinx architectures and show you how to work on your first project, which includes toggling an LED. You’ll then cover SystemVerilog RTL designs and their implementations. Next, you’ll get to grips with using the combinational Boolean logic design and work on several projects, such as creating a calculator and updating it using FPGA resources. Later, the book will take you through the advanced concepts of AXI and show you how to create a keyboard using PS/2. Finally, you’ll be able to consolidate all the projects in the book to create a unified output using a Video Graphics Array (VGA) controller that you’ll design. By the end of this SystemVerilog FPGA book, you’ll have learned how to work with FPGA systems and be able to design hardware circuits and boards using SystemVerilog programming.
Table of Contents (16 chapters)
1
Section 1: Introduction to FPGAs and Xilinx Architectures
3
Section 2: Introduction to Verilog RTL Design, Simulation, and Implementation
9
Section 3: Interfacing with External Components

Introducing data types

All computer programming languages need variables. These are places in memory or registers that store values that the program that's running can access. Hardware Design Languages (HDLs) are a little different in that you are building hardware. There are variable equivalents in terms of storage/sequential logic, which we'll discuss in the next chapter, but we also need wires to move data around the hardware we're building using the FPGA routing resources, even if they are never stored:

Figure 2.1 – Program flow versus HDL flow

As we can see, in a traditional flow, you have a computer that has a processor and memory. The program flows linearly; however, with modern machines, there are increasing levels of parallelism. When you write SystemVerilog, you are using data types to create hardware that will store or move data around physically from Lookup Tables (LUTs) to LUTs. If you want to use external memory, which is...