Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By : Lentin Joseph, Jonathan Cacace
Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By: Lentin Joseph, Jonathan Cacace

Overview of this book

The Robot Operating System (ROS) is a software framework used for programming complex robots. ROS enables you to develop software for building complex robots without writing code from scratch, saving valuable development time. Mastering ROS for Robotics Programming provides complete coverage of the advanced concepts using easy-to-understand, practical examples and step-by-step explanations of essential concepts that you can apply to your ROS robotics projects. The book begins by helping you get to grips with the basic concepts necessary for programming robots with ROS. You'll then discover how to develop a robot simulation, as well as an actual robot, and understand how to apply high-level capabilities such as navigation and manipulation from scratch. As you advance, you'll learn how to create ROS controllers and plugins and explore ROS's industrial applications and how it interacts with aerial robots. Finally, you'll discover best practices and methods for working with ROS efficiently. By the end of this ROS book, you'll have learned how to create various applications in ROS and build your first ROS robot.
Table of Contents (22 chapters)
1
Section 1 – ROS Programming Essentials
4
Section 2 – ROS Robot Simulation
11
Section 3 – ROS Robot Hardware Prototyping
15
Section 4 – Advanced ROS Programming

Working with ROS camera calibration

Like all sensors, cameras also need to be calibrated so that we can correct the distortions in the camera's images due to its internal parameters, as well as for finding the world coordinates from the camera coordinates.

The primary parameters that cause image distortions are radial distortions and tangential distortions. Using the camera calibration algorithm, we can model these parameters and also calculate the real-world coordinates from the camera coordinates by computing the camera calibration matrix, which contains the focal distance and the principal points.

Camera calibration can be done using a classic black-white chessboard, symmetrical circle pattern, or asymmetrical circle pattern. According to each pattern, we can use different equations to get the calibration parameters. Using certain calibration tools, we can detect these patterns, and each detected pattern is taken as a new equation. When the calibration tool detects enough...