Book Image

Linux Device Driver Development - Second Edition

By : John Madieu
Book Image

Linux Device Driver Development - Second Edition

By: John Madieu

Overview of this book

Linux is by far the most-used kernel on embedded systems. Thanks to its subsystems, the Linux kernel supports almost all of the application fields in the industrial world. This updated second edition of Linux Device Driver Development is a comprehensive introduction to the Linux kernel world and the different subsystems that it is made of, and will be useful for embedded developers from any discipline. You'll learn how to configure, tailor, and build the Linux kernel. Filled with real-world examples, the book covers each of the most-used subsystems in the embedded domains such as GPIO, direct memory access, interrupt management, and I2C/SPI device drivers. This book will show you how Linux abstracts each device from a hardware point of view and how a device is bound to its driver(s). You’ll also see how interrupts are propagated in the system as the book covers the interrupt processing mechanisms in-depth and describes every kernel structure and API involved. This new edition also addresses how not to write device drivers using user space libraries for GPIO clients, I2C, and SPI drivers. By the end of this Linux book, you’ll be able to write device drivers for most of the embedded devices out there.
Table of Contents (23 chapters)
1
Section 1 -Linux Kernel Development Basics
6
Section 2 - Linux Kernel Platform Abstraction and Device Drivers
12
Section 3 - Making the Most out of Your Hardware
18
Section 4 - Misc Kernel Subsystems for the Embedded World

Implementing work-deferring mechanisms

Deferring is a method by which you schedule a piece of work to be executed in the future. It's a way to report an action later. Obviously, the kernel provides facilities to implement such a mechanism; it allows you to defer functions, whatever their type, to be called and executed later. There are three of them in the kernel, as outlined here:

  • Softirqs: Executed in an atomic context
  • Tasklets: Executed in an atomic context
  • Workqueues: Executed in a process context

In the next three sections, we will learn in detail the implementation of each of them.

Softirqs

As the name suggests, softirq stands for software interrupt. Such a handler can preempt all other tasks on the system but the hardware IRQ handlers since it is executed with IRQs enabled. Softirqs are intended to be used for high-frequency threaded job scheduling. Network and block devices are the only two subsystems in the kernel that make direct use of softirqs...