Book Image

Linux Device Driver Development - Second Edition

By : John Madieu
Book Image

Linux Device Driver Development - Second Edition

By: John Madieu

Overview of this book

Linux is by far the most-used kernel on embedded systems. Thanks to its subsystems, the Linux kernel supports almost all of the application fields in the industrial world. This updated second edition of Linux Device Driver Development is a comprehensive introduction to the Linux kernel world and the different subsystems that it is made of, and will be useful for embedded developers from any discipline. You'll learn how to configure, tailor, and build the Linux kernel. Filled with real-world examples, the book covers each of the most-used subsystems in the embedded domains such as GPIO, direct memory access, interrupt management, and I2C/SPI device drivers. This book will show you how Linux abstracts each device from a hardware point of view and how a device is bound to its driver(s). You’ll also see how interrupts are propagated in the system as the book covers the interrupt processing mechanisms in-depth and describes every kernel structure and API involved. This new edition also addresses how not to write device drivers using user space libraries for GPIO clients, I2C, and SPI drivers. By the end of this Linux book, you’ll be able to write device drivers for most of the embedded devices out there.
Table of Contents (23 chapters)
1
Section 1 -Linux Kernel Development Basics
6
Section 2 - Linux Kernel Platform Abstraction and Device Drivers
12
Section 3 - Making the Most out of Your Hardware
18
Section 4 - Misc Kernel Subsystems for the Embedded World

Creating a device node

The creation of a device node makes it visible to users and allows users to interact with the underlying device. Linux requires intermediate steps before the device node is created and the following section discusses these steps.

Device identification

To precisely identify devices, their identifiers must be unique. Although identifiers can be dynamically allocated, most drivers still use static identifiers for compatibility reasons. Whatever the allocation method, the Linux kernel stores file device numbers in elements of dev_t type, which is a 32-bit unsigned integer in which the major is represented by the first 12 bits, and the minor is coded on the 20 remaining bits.

All of this is stated in include/linux/kdev_t.h, which contains several macros, including those that, given a dev_t type variable, can return either a minor or a major number:

#define MINORBITS    20
#define MINORMASK    ((1U << MINORBITS...