Book Image

Linux Device Driver Development - Second Edition

By : John Madieu
Book Image

Linux Device Driver Development - Second Edition

By: John Madieu

Overview of this book

Linux is by far the most-used kernel on embedded systems. Thanks to its subsystems, the Linux kernel supports almost all of the application fields in the industrial world. This updated second edition of Linux Device Driver Development is a comprehensive introduction to the Linux kernel world and the different subsystems that it is made of, and will be useful for embedded developers from any discipline. You'll learn how to configure, tailor, and build the Linux kernel. Filled with real-world examples, the book covers each of the most-used subsystems in the embedded domains such as GPIO, direct memory access, interrupt management, and I2C/SPI device drivers. This book will show you how Linux abstracts each device from a hardware point of view and how a device is bound to its driver(s). You’ll also see how interrupts are propagated in the system as the book covers the interrupt processing mechanisms in-depth and describes every kernel structure and API involved. This new edition also addresses how not to write device drivers using user space libraries for GPIO clients, I2C, and SPI drivers. By the end of this Linux book, you’ll be able to write device drivers for most of the embedded devices out there.
Table of Contents (23 chapters)
1
Section 1 -Linux Kernel Development Basics
6
Section 2 - Linux Kernel Platform Abstraction and Device Drivers
12
Section 3 - Making the Most out of Your Hardware
18
Section 4 - Misc Kernel Subsystems for the Embedded World

Representing and addressing devices

In the device tree, a node is the representational unit of a device. In other words, a device is represented by at least one node. Following this, device nodes can either be populated with other nodes (therefore, creating a parent-child relationship) or with properties (which would describe the device corresponding to the node they populate).

While each device can operate standalone, there are situations where a device might want to be accessed by its parent or where a parent might want to access one of its children. For example, such situations occur when a bus controller (the parent node) wants to access one or more of the devices (declared as a sub-node) sitting on its bus. Typical examples include I2C controllers and I2C devices, SPI controllers and SPI devices, CPUs and memory-mapped devices, and more. Thus, the concept of device addressing has emerged. Device addressing has been introduced with a reg property, which is used in each addressable...