#### Overview of this book

Data structures allow you to store and organize data efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. Hands-On Data Structures and Algorithms with Python teaches you the essential Python data structures and the most common algorithms for building easy and maintainable applications. This book helps you to understand the power of linked lists, double linked lists, and circular linked lists. You will learn to create complex data structures, such as graphs, stacks, and queues. As you make your way through the chapters, you will explore the application of binary searches and binary search trees, along with learning common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. In the concluding chapters, you will get to grips with organizing your code in a manageable, consistent, and extendable way. You will also study how to bubble sort, selection sort, insertion sort, and merge sort algorithms in detail. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications. You will get insights into Python implementation of all the important and relevant algorithms.
Table of Contents (16 chapters)
Preface
Free Chapter
Python Objects, Types, and Expressions
Python Data Types and Structures
Principles of Algorithm Design
Lists and Pointer Structures
Stacks and Queues
Trees
Hashing and Symbol Tables
Graphs and Other Algorithms
Searching
Sorting
Selection Algorithms
String Algorithms and Techniques
Design Techniques and Strategies
Implementations, Applications, and Tools
Other Books You May Enjoy

# Sets

Sets are unordered collections of unique items. Sets are themselves mutable—we can add and remove items from them; however, the items themselves must be immutable. An important distinction with sets is that they cannot contain duplicate items. Sets are typically used to perform mathematical operations such as intersection, union, difference, and complement.

Unlike sequence types, set types do not provide any indexing or slicing operations. There are two types of set objects in Python, the mutable set object and the immutable frozenset object. Sets are created using comma-separated values within curly braces. By the way, we cannot create an empty set using a={}, because this will create a dictionary. To create an empty set, we write either a=set() or a=frozenset().

Methods and operations of sets are described in the following table:

 Method Description len...