Book Image

Mastering Concurrency in Python

By : Quan Nguyen
Book Image

Mastering Concurrency in Python

By: Quan Nguyen

Overview of this book

Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
Table of Contents (22 chapters)

Summary

Starvation is a problem in concurrent systems in which a process (or thread) cannot gain access to the necessary resources to proceed with its execution and, therefore, cannot make any progress. Most of the time, a poorly coordinated set of scheduling instructions is the main cause of starvation; deadlock situations can also lead to starvation.

The readers-writers problem is one of the classic and most complex examples in the field of computer science, illustrating problems that might occur in a concurrent program. Through an analysis of different approaches to the readers-writers problem, you have gained insight regarding how starvation can be solved with different scheduling algorithms. Fairness is an essential element of a good scheduling algorithm, and, by making sure that the priority is distributed appropriately among different processes and threads, starvation can...