Book Image

Hands-On High Performance with Go

By : Bob Strecansky
Book Image

Hands-On High Performance with Go

By: Bob Strecansky

Overview of this book

Go is an easy-to-write language that is popular among developers thanks to its features such as concurrency, portability, and ability to reduce complexity. This Golang book will teach you how to construct idiomatic Go code that is reusable and highly performant. Starting with an introduction to performance concepts, you’ll understand the ideology behind Go’s performance. You’ll then learn how to effectively implement Go data structures and algorithms along with exploring data manipulation and organization to write programs for scalable software. This book covers channels and goroutines for parallelism and concurrency to write high-performance code for distributed systems. As you advance, you’ll learn how to manage memory effectively. You’ll explore the compute unified device architecture (CUDA) application programming interface (API), use containers to build Go code, and work with the Go build cache for quicker compilation. You’ll also get to grips with profiling and tracing Go code for detecting bottlenecks in your system. Finally, you’ll evaluate clusters and job queues for performance optimization and monitor the application for performance regression. By the end of this Go programming book, you’ll be able to improve existing code and fulfill customer requirements by writing efficient programs.
Table of Contents (20 chapters)
1
Section 1: Learning about Performance in Go
7
Section 2: Applying Performance Concepts in Go
13
Section 3: Deploying, Monitoring, and Iterating on Go Programs with Performance in Mind

Introducing vectors

A vector is a one-dimensional array that is often used for storing data. Go originally had a container/vector implementation, but this was removed on 18 October 2011, as slices were deemed more idiomatic for vector use in Go. The functionality provided by the built-in slice gives plenty of vector manipulation help. A slice would be a row vector, or 1 × m matrix, implementation. A simple row vector looks as follows:

As you can see, we have a 1 × m matrix. To implement a simple row vector in Go, we can use a slice representation, like so:

v := []int{0, 1, 2, 3}

This is an easy way to portray a simple row vector using Go's built-in functionality.

Vector computations

A column vector is an m...