Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Quantum Computing Algorithms
  • Table Of Contents Toc
  • Feedback & Rating feedback
Quantum Computing Algorithms

Quantum Computing Algorithms

By : Barry Burd
4.6 (7)
close
close
Quantum Computing Algorithms

Quantum Computing Algorithms

4.6 (7)
By: Barry Burd

Overview of this book

Navigate the quantum computing spectrum with this book, bridging the gap between abstract, math-heavy texts and math-avoidant beginner guides. Unlike intermediate-level books that often leave gaps in comprehension, this all-encompassing guide offers the missing links you need to truly understand the subject. Balancing intuition and rigor, this book empowers you to become a master of quantum algorithms. No longer confined to canned examples, you'll acquire the skills necessary to craft your own quantum code. Quantum Computing Algorithms is organized into four sections to build your expertise progressively. The first section lays the foundation with essential quantum concepts, ensuring that you grasp qubits, their representation, and their transformations. Moving to quantum algorithms, the second section focuses on pivotal algorithms — specifically, quantum key distribution and teleportation. The third section demonstrates the transformative power of algorithms that outpace classical computation and makes way for the fourth section, helping you to expand your horizons by exploring alternative quantum computing models. By the end of this book, quantum algorithms will cease to be mystifying as you make this knowledge your asset and enter a new era of computation, where you have the power to shape the code of reality.
Table of Contents (19 chapters)
close
close
Lock Free Chapter
2
Part 1 Nuts and Bolts
7
Part 2 Making Qubits Work for You
10
Part 3 Quantum Computing Algorithms
14
Part 4 Beyond Gate-Based Quantum Computing

Epilogue – what does have to do with Grover’s algorithm?

When you run Grover’s algorithm, the optimal number of iterations is {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac><msqrt><mi>N</mi></msqrt></mstyle></math>"}, where {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mi>N</mi></mstyle></math>"} is the number of things you’re searching through. In this formula, you have {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mi>n</mi></mstyle></math>"} qubits and {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mi>N</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><msup><mn>2</mn><mi>n</mi></msup></mstyle></math>"}.

Usually, the formula requires a few tweaks. For example, you can’t use the formula to search through exactly 1,000 items, because 1,000 isn’t a power of 2. Instead, you add 24 fake items to your list. Then, you use 10 qubits to search through {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><msup><mn>2</mn><mn>10</mn></msup><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>1024</mn></mstyle></math>"} items. And what if {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac><msqrt><mi>N</mi></msqrt></mstyle></math>"} isn’t an integer? The value of {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac><msqrt><mn>1024</mn></msqrt></mstyle></math>"} is approximately 25.1327, and you can’t apply the Grover iterate 25.1327 times. In this case, there are ways to decide whether Grover’s sweet spot is 25 or 26, but we won’t get into that here.

In this section, our goal is to convey some idea of the role {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfrac><mi>&#x3C0;</mi><mn>4</mn></mfrac></mstyle></math>"} plays in the number of Grover iterate applications. Our explanation has many gaps and involves several approximations. We won’t come to...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Quantum Computing Algorithms
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon