Book Image

Cryptography Algorithms

By : Massimo Bertaccini
Book Image

Cryptography Algorithms

By: Massimo Bertaccini

Overview of this book

Cryptography Algorithms is designed to help you get up and running with modern cryptography algorithms. You'll not only explore old and modern security practices but also discover practical examples of implementing them effectively. The book starts with an overview of cryptography, exploring key concepts including popular classical symmetric and asymmetric algorithms, protocol standards, and more. You'll also cover everything from building crypto codes to breaking them. In addition to this, the book will help you to understand the difference between various types of digital signatures. As you advance, you will become well-versed with the new-age cryptography algorithms and protocols such as public and private key cryptography, zero-knowledge protocols, elliptic curves, quantum cryptography, and homomorphic encryption. Finally, you'll be able to apply the knowledge you've gained with the help of practical examples and use cases. By the end of this cryptography book, you will be well-versed with modern cryptography and be able to effectively apply it to security applications.
Table of Contents (15 chapters)
1
Section 1: A Brief History and Outline of Cryptography
3
Section 2: Classical Cryptography (Symmetric and Asymmetric Encryption)
7
Section 3: New Cryptography Algorithms and Protocols
12
Section 4: Homomorphic Encryption and the Crypto Search Engine

Analysis of homomorphic encryption and its implications

Analyzing the partial homomorphic scheme proposed for RSA in the preceding section, we can see an interesting correspondence between the operations on cryptograms (data expressed in clear) and messages (data in blind).

This correspondence is just what we call homomorphism.

Now, the problem is that RSA, just like most of the algorithms explored until now, is partially homomorphic and can only represent some mathematical operations, such as multiplication or addition. The real difficulty is finding an efficient algorithm that represents all the mathematical and Boolean operations together.

Another simple example (case study) of how a form of homomorphism can be represented is performed by addition.

Let's take [A] and [B], two secret values that give [C] as their sum:

A + B ≡ C (mod Z)

Now, let's take two encrypted value correspondents respective to A and B.

For example, the encrypted values...