Book Image

Cryptography Algorithms

By : Massimo Bertaccini
Book Image

Cryptography Algorithms

By: Massimo Bertaccini

Overview of this book

Cryptography Algorithms is designed to help you get up and running with modern cryptography algorithms. You'll not only explore old and modern security practices but also discover practical examples of implementing them effectively. The book starts with an overview of cryptography, exploring key concepts including popular classical symmetric and asymmetric algorithms, protocol standards, and more. You'll also cover everything from building crypto codes to breaking them. In addition to this, the book will help you to understand the difference between various types of digital signatures. As you advance, you will become well-versed with the new-age cryptography algorithms and protocols such as public and private key cryptography, zero-knowledge protocols, elliptic curves, quantum cryptography, and homomorphic encryption. Finally, you'll be able to apply the knowledge you've gained with the help of practical examples and use cases. By the end of this cryptography book, you will be well-versed with modern cryptography and be able to effectively apply it to security applications.
Table of Contents (15 chapters)
1
Section 1: A Brief History and Outline of Cryptography
3
Section 2: Classical Cryptography (Symmetric and Asymmetric Encryption)
7
Section 3: New Cryptography Algorithms and Protocols
12
Section 4: Homomorphic Encryption and the Crypto Search Engine

DES algorithms

The first algorithm presented in this chapter is Data Encryption Standard (DES). Its history began in 1973 when the National Bureau of Standards (NBS), which later became the National Institute of Standards and Technology (NIST), required an algorithm to adopt as a national standard. In 1974, IBM proposed Lucifer, a symmetric algorithm that was forwarded from NIST to the National Security Agency (NSA). After analysis and some modifications, it was renamed DES. In 1977, DES was adopted as a national standard and it was largely used in electronic commerce environments, such as in the financial field, for data encryption.

Remarkable debates arose over the robustness of DES within the academic and professional community of cryptologists. The criticism derived from the short key length and the perplexity that, after a review advanced by the NSA, the algorithm could be subjected to a trapdoor, expressly injected by the NSA into DES to spy on encrypted communications.

...