Book Image

Network Science with Python and NetworkX Quick Start Guide

By : Edward L. Platt
Book Image

Network Science with Python and NetworkX Quick Start Guide

By: Edward L. Platt

Overview of this book

NetworkX is a leading free and open source package used for network science with the Python programming language. NetworkX can track properties of individuals and relationships, find communities, analyze resilience, detect key network locations, and perform a wide range of important tasks. With the recent release of version 2, NetworkX has been updated to be more powerful and easy to use. If you’re a data scientist, engineer, or computational social scientist, this book will guide you in using the Python programming language to gain insights into real-world networks. Starting with the fundamentals, you’ll be introduced to the core concepts of network science, along with examples that use real-world data and Python code. This book will introduce you to theoretical concepts such as scale-free and small-world networks, centrality measures, and agent-based modeling. You’ll also be able to look for scale-free networks in real data and visualize a network using circular, directed, and shell layouts. By the end of this book, you’ll be able to choose appropriate network representations, use NetworkX to build and characterize networks, and uncover insights while working with real-world systems.
Table of Contents (15 chapters)

Configuration models

When you need a synthetic network to resemble an existing network, configuration models might be the way to go. Given an input network, they produce a new network with the same number of nodes, each with the same degree. The edges of the new network are created randomly, in a way that preserves node degree.

Configuration models and other methods for constructing synthetic networks based on real data can be used to protect privacy. For example, online social networks can release configuration models based on their true member network to allow researchers to study the properties of those networks without having access to members' private data.

As an example, we can use a configuration model to create a synthetic network based on the karate club network. The following code shows exactly how to do this, using the configuration_model() function in the degree_seq...