Book Image

Mastering TensorFlow 1.x

Book Image

Mastering TensorFlow 1.x

Overview of this book

TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.
Table of Contents (21 chapters)
19
Tensor Processing Units

Autoencoder types

Autoencoder architectures can be found in a variety of configurations such as simple autoencoders, sparse autoencoders, denoising autoencoders, and convolutional autoencoders.

  • Simple autoencoder: In simple autoencoder, the hidden layers have lesser number of nodes or neurons as compared to the input. For example, in the MNIST dataset, an input of 784 features can be connected to the hidden layer of 512 nodes or 256 nodes, which is connected to the 784-feature output layer. Thus, during training, the 784 features would be learned by only 256 nodes. Simple autoencoders are also known as undercomplete autoencoders.

    Simple autoencoder could be single-layer or multi-layer. Generally, single-layer autoencoder does not perform very good in production. Multi-layer autoencoder has more than one hidden layer, divided into encoder and decoder groupings. Encoder layers...