Book Image

Mastering TensorFlow 1.x

Book Image

Mastering TensorFlow 1.x

Overview of this book

TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.
Table of Contents (21 chapters)
19
Tensor Processing Units

Strategies for distributed execution

For distributing the training of the single model across multiple devices or nodes, there are the following strategies:

  • Model Parallel: Divide the model into multiple subgraphs and place the separate graphs on different nodes or devices. The subgraphs perform their computation and exchange the variables as required.
  • Data Parallel: Divide the data into batches and run the same model on multiple nodes or devices, combining the parameters on a master node. Thus the worker nodes train the model on batches of data and send the parameter updates to the master node, also known as the parameter server.

The preceding diagram shows the data parallel approach where the model replicas read the partitions of data in batches and send the parameter updates to the parameter servers, and parameter servers send the updated parameters back to the model replicas...