Book Image

Mastering TensorFlow 1.x

Book Image

Mastering TensorFlow 1.x

Overview of this book

TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.
Table of Contents (21 chapters)
19
Tensor Processing Units

MultiLayer Perceptron

When we connect the artificial neurons together, based on a well-defined structure, we call it a neural network. Here is the simplest neural network with one neuron:

Neural network with one neuron

We connect the neurons such that the output of one layer becomes the input of the next layer, until the final layer's output becomes the final output. Such neural networks are called feed forward neural networks (FFNN). As these FFNNs are made up of layers of neurons connected together, they are hence called MultiLayer Perceptrons (MLP) or deep neural networks (DNN).

As an example, the MLP depicted in the following diagram has three features as inputs: two hidden layers of five neurons each and one output y. The neurons are fully connected to the neurons of the next layer. Such layers are also called dense layers or affine layers and such models are also known...