Book Image

Mastering TensorFlow 1.x

Book Image

Mastering TensorFlow 1.x

Overview of this book

TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.
Table of Contents (21 chapters)
19
Tensor Processing Units

Summary

Autoencoders are a great tool for unsupervised learning from data. They are often used for dimensionality reduction so that data can be represented by the lesser number of features. In this chapter, you learned about various types of autoencoders. We practiced building the three types of autoencoders using TensorFlow and Keras: stacked autoencoders, denoising autoencoders, and variational autoencoders. We used the MNIST dataset as an example.

In the last chapters, you have learned how to build various kinds of machine learning and deep learning models with TensorFlow and Keras, such as regression, classification, MLP, CNN, RNN, and autoencoders. In the next chapter, you will learn about advanced features of TensorFlow and Keras that allow us to take the models to production.