Book Image

Training Systems using Python Statistical Modeling

By : Curtis Miller
Book Image

Training Systems using Python Statistical Modeling

By: Curtis Miller

Overview of this book

Python's ease-of-use and multi-purpose nature has made it one of the most popular tools for data scientists and machine learning developers. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book is designed to guide you through using these libraries to implement effective statistical models for predictive analytics. You’ll start by delving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will focus on supervised learning, which will help you explore the principles of machine learning and train different machine learning models from scratch. Next, you will work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. The book will also cover algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. In later chapters, you will learn how neural networks can be trained and deployed for more accurate predictions, and understand which Python libraries can be used to implement them. By the end of this book, you will have the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics.
Table of Contents (9 chapters)

Classical Statistical Analysis

Welcome to the first chapter of our book! In this book, we will use our knowledge of Python and machine learning to create data models and perform statistical analysis on different data schemas. We will learn about various techniques pertaining to statistical learning and how to apply them in data analysis. By the end of this book, you will be confident in using various machine learning models, training them, and learning how to evaluate model results and implement various dimensionality reduction techniques. So, without further ado, let's dive right in! In this chapter, we will look at the following topics:

  • Computing descriptive statistics
  • Classical inference for proportions
  • Classical inference for means
  • Diving into Bayesian analysis
  • Bayesian analysis for proportions
  • Bayesian analysis for means
  • Finding correlations