Book Image

Mastering Kubernetes - Fourth Edition

By : Gigi Sayfan
3.3 (3)
Book Image

Mastering Kubernetes - Fourth Edition

3.3 (3)
By: Gigi Sayfan

Overview of this book

The fourth edition of the bestseller Mastering Kubernetes includes the most recent tools and code to enable you to learn the latest features of Kubernetes 1.25. This book contains a thorough exploration of complex concepts and best practices to help you master the skills of designing and deploying large-scale distributed systems on Kubernetes clusters. You’ll learn how to run complex stateless and stateful microservices on Kubernetes, including advanced features such as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage backends. In addition, you’ll understand how to utilize serverless computing and service meshes. Further, two new chapters have been added. “Governing Kubernetes” covers the problem of policy management, how admission control addresses it, and how policy engines provide a powerful governance solution. “Running Kubernetes in Production” shows you what it takes to run Kubernetes at scale across multiple cloud providers, multiple geographical regions, and multiple clusters, and it also explains how to handle topics such as upgrades, capacity planning, dealing with cloud provider limits/quotas, and cost management. By the end of this Kubernetes book, you’ll have a strong understanding of, and hands-on experience with, a wide range of Kubernetes capabilities.
Table of Contents (21 chapters)
Other Books You May Enjoy

Large cluster performance, cost, and design trade-offs

In the previous section, we looked at various ways to provision, plan for capacity and autoscale clusters and workloads.In this section, we will consider the various options and configurations of large clusters with different reliability and high-availability properties. When you design your cluster, you need to understand your options and choose wisely based on the needs of your organization.

The topics we will cover include various availability requirements, from best effort all the way to the holy grail of zero downtime. Finally, we will settle down on the practical site reliability engineering approach. For each category of availability, we will consider what it means from the perspectives of performance and cost.

Availability requirements

Different systems have very different requirements for reliability and availability. Moreover, different sub-systems have very different requirements. For example, billing systems are always...