Book Image

Mastering Kubernetes - Fourth Edition

By : Gigi Sayfan
3.3 (3)
Book Image

Mastering Kubernetes - Fourth Edition

3.3 (3)
By: Gigi Sayfan

Overview of this book

The fourth edition of the bestseller Mastering Kubernetes includes the most recent tools and code to enable you to learn the latest features of Kubernetes 1.25. This book contains a thorough exploration of complex concepts and best practices to help you master the skills of designing and deploying large-scale distributed systems on Kubernetes clusters. You’ll learn how to run complex stateless and stateful microservices on Kubernetes, including advanced features such as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage backends. In addition, you’ll understand how to utilize serverless computing and service meshes. Further, two new chapters have been added. “Governing Kubernetes” covers the problem of policy management, how admission control addresses it, and how policy engines provide a powerful governance solution. “Running Kubernetes in Production” shows you what it takes to run Kubernetes at scale across multiple cloud providers, multiple geographical regions, and multiple clusters, and it also explains how to handle topics such as upgrades, capacity planning, dealing with cloud provider limits/quotas, and cost management. By the end of this Kubernetes book, you’ll have a strong understanding of, and hands-on experience with, a wide range of Kubernetes capabilities.
Table of Contents (21 chapters)
19
Other Books You May Enjoy
20
Index

Running a multi-tenant clusters

In this section, we will look briefly at the option to use a single cluster to host systems for multiple users or multiple user communities (which is also known as multi-tenancy). The idea is that those users are totally isolated and may not even be aware that they share the cluster with other users. Each user community will have its own resources, and there will be no communication between them (except maybe through public endpoints). The Kubernetes namespace concept is the ultimate expression of this idea. But, they don't provide absolute isolation. Another solution is to use virtual clusters where each namespace appears as a completely independent cluster to the users.

The case for a multi-tenant clusters

Why should you run a single cluster for multiple isolated users or deployments? Isn't it simpler to just have a dedicated cluster for each user? There are two main reasons: cost and operational complexity. If you have many relatively small...