Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Predictive Analytics with Python
  • Table Of Contents Toc
Learning Predictive Analytics with Python

Learning Predictive Analytics with Python

By : Kumar, Gary Dougan
3.4 (11)
close
close
Learning Predictive Analytics with Python

Learning Predictive Analytics with Python

3.4 (11)
By: Kumar, Gary Dougan

Overview of this book

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You’ll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
Table of Contents (12 chapters)
close
close
10
A. A List of Links
11
Index

Implementing clustering using Python

Now, as we understand the mathematics behind the k-means clustering better, let us implement it on a dataset and see how to glean insights from the performed clustering.

The dataset we will be using for this is about wine. Each observation represents a separate sample of wine and has information about the chemical composition of that wine. Some wine connoisseur painstakingly analyzed various samples of wine to create this dataset. Each column of the dataset has information about the composition of one chemical. There is one column called quality as well, which is based on the ratings given by the professional wine testers.

The prices of wines are generally decided by the ratings given by the professional testers. However, this can be very subjective and certainly there is a scope for a more logical process to wine prices. One approach is to cluster them based on their chemical compositions and quality and then price the similar clusters together based...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Predictive Analytics with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon