Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying F# for Machine Learning Essentials
  • Table Of Contents Toc
F# for Machine Learning Essentials

F# for Machine Learning Essentials

By : Sudipta Mukherjee
2 (1)
close
close
F# for Machine Learning Essentials

F# for Machine Learning Essentials

2 (1)
By: Sudipta Mukherjee

Overview of this book

The F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs. If you want to learn how to use F# to build machine learning systems, then this is the book you want. Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.
Table of Contents (9 chapters)
close
close
8
Index

Linear regression method of least square


Let's say you have a list of data point pairs such as the following:

You want to find out if there are any linear relationships between and .

In the simplest possible model of linear regression, there exists a simple linear relationship between the independent variable (also known as the predictor variable) and the dependent variable (also known as the predicted or the target variable). The independent variable is most often represented by the symbol and the target variable is represented by the symbol . In the simplest form of linear regression, with only one predictor variable, the predicted value of Y is calculated by the following formula:

is the predicted variable for . Error for a single data point is represented by:

and are the regression parameters that can be calculated with the following formula.

The best linear model minimizes the sum of squared errors. This is known as Sum of Squared Error (SSE).

For the best model, the regression...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
F# for Machine Learning Essentials
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon