Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying F# for Machine Learning Essentials
  • Table Of Contents Toc
F# for Machine Learning Essentials

F# for Machine Learning Essentials

By : Sudipta Mukherjee
2 (1)
close
close
F# for Machine Learning Essentials

F# for Machine Learning Essentials

2 (1)
By: Sudipta Mukherjee

Overview of this book

The F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs. If you want to learn how to use F# to build machine learning systems, then this is the book you want. Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.
Table of Contents (9 chapters)
close
close
8
Index

Multiclass classification using logistic regression


You have seen in the previous section how logistic regression can be used to perform binary classification. In this section, you will see how to use logistic regression (which is known to do the binary classification) for multiclass classification. The algorithm used is known as the "one-vs-all" method.

The algorithm is very intuitive. It learns many models as many different classes of items are there in the training dataset. Later, when a new entry is given for identification, all the models are used to compute the confidence score that reflects the confidence of the model that the new entry belongs to that class. The model with the highest confidence is selected.

In this example, you will see how Accord.NET can be used to implement multiclass classification to identify iris flowers. There are three types of iris flowers, namely, Iris versicolor, Iris setosa, and Iris virginica. The task is to identify a given flower from the measurements...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
F# for Machine Learning Essentials
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon