Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Data Analysis Cookbook
  • Table Of Contents Toc
Python Data Analysis Cookbook

Python Data Analysis Cookbook

By : Ivan Idris
3 (2)
close
close
Python Data Analysis Cookbook

Python Data Analysis Cookbook

3 (2)
By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (18 chapters)
close
close
13
A. Glossary
17
Index

Fitting noisy data with the RANSAC algorithm

We discussed the issue of outliers in the context of regression elsewhere in this book (refer to the See also section at the end of this recipe). The issue is clear—the outliers make it difficult to properly fit our models. The RANdom SAmple Consensus algorithm (RANSAC) does a best effort attempt to fit our data in an iterative manner. RANSAC was introduced by Fishler and Bolles in 1981.

We often have some knowledge about our data, for instance the data may follow a normal distribution. Or, the data may be a mix produced by multiple processes with different characteristics. We could also have abnormal data due to glitches or errors in data transformation. In such cases, it should be easy to identify outliers and deal with them appropriately. The RANSAC algorithm doesn't know your data, but it also assumes that there are inliers and outliers.

The algorithm goes through a fixed number of iterations. The object is to find a set of inliers...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Data Analysis Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon