Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Spark for Data Science
  • Table Of Contents Toc
Mastering Spark for Data Science

Mastering Spark for Data Science

By : Bifet, Morgan, Amend, Hallett, George
4 (2)
close
close
Mastering Spark for Data Science

Mastering Spark for Data Science

4 (2)
By: Bifet, Morgan, Amend, Hallett, George

Overview of this book

Data science seeks to transform the world using data, and this is typically achieved through disrupting and changing real processes in real industries. In order to operate at this level you need to build data science solutions of substance –solutions that solve real problems. Spark has emerged as the big data platform of choice for data scientists due to its speed, scalability, and easy-to-use APIs. This book deep dives into using Spark to deliver production-grade data science solutions. This process is demonstrated by exploring the construction of a sophisticated global news analysis service that uses Spark to generate continuous geopolitical and current affairs insights.You will learn all about the core Spark APIs and take a comprehensive tour of advanced libraries, including Spark SQL, Spark Streaming, MLlib, and more. You will be introduced to advanced techniques and methods that will help you to construct commercial-grade data products. Focusing on a sequence of tutorials that deliver a working news intelligence service, you will learn about advanced Spark architectures, how to work with geographic data in Spark, and how to tune Spark algorithms so they scale linearly.
Table of Contents (15 chapters)
close
close

Chapter 4. Exploratory Data Analysis

Exploratory Data Analysis (EDA) performed in commercial settings is generally commissioned as part of a larger piece of work that is organized and executed along the lines of a feasibility assessment. The aim of this feasibility assessment, and thus the focus of what we can term an extended EDA, is to answer a broad set of questions about whether the data examined is fit for purpose and thus worthy of further investment.

Under this general remit, the data investigations are expected to cover several aspects of feasibility that include the practical aspects of using the data in production, such as its timeliness, quality, complexity, and coverage, as well as being appropriate for the intended hypothesis to be tested. While some of these aspects are potentially less fun from a data science perspective, these data quality led investigations are no less important than purely statistical insights. This is especially true when the datasets in question...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Spark for Data Science
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon