Book Image

Mastering Predictive Analytics with Python

By : Joseph Babcock
Book Image

Mastering Predictive Analytics with Python

By: Joseph Babcock

Overview of this book

The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life
Table of Contents (16 chapters)
Mastering Predictive Analytics with Python
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Agglomerative clustering


In contrast to algorithms, such as k-means, where the dataset is partitioned into individual groups, agglomerative or hierarchical clustering techniques start by considering each datapoint as its own cluster and merging them together into larger groups from the bottom up (Maimon, Oded, and Lior Rokach, eds. Data mining and knowledge discovery handbook. Vol. 2. New York: Springer, 2005). The classical application of this idea is in phylogenetic trees in evolution, where common ancestors connect individual organisms. Indeed, these methods organize the data into tree diagrams, known as dendrograms, which visualize how the data is sequentially merged into larger groups.

The basic steps of an agglomerative algorithm are (diagrammed visually in the figure below):

  1. Start with each point in its own cluster.

  2. Compare each pair of datapoints using a distance metric. This could be any of the methods discussed above.

  3. Use a linkage criterion to merge datapoints (at the first stage...