Book Image

Mastering Predictive Analytics with Python

By : Joseph Babcock
Book Image

Mastering Predictive Analytics with Python

By: Joseph Babcock

Overview of this book

The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life
Table of Contents (16 chapters)
Mastering Predictive Analytics with Python
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Checking the health of models with diagnostics


Throughout the previous chapters, we have primarily focused on the initial steps of predictive modeling, from data preparation and feature extraction to optimization of parameters. However, it is unlikely that our customers or business will remain unchanging, so predictive models must typically adapt as well. We can use a number of diagnostics to check the performance of models over time, which serve as a useful benchmark to evaluate the health of our algorithms.

Evaluating changes in model performance

Let us consider a scenario in which we train a predictive model on customer data and evaluate its performance on a set of new records each day for a month afterward. If this were a classification model, such as predicting whether a customer will cancel their subscription in the next pay period, we could use a metric such as the Area Under the Curve (AUC) of the Receiver-Operator-Characteristic (ROC) curve that we saw previously in Chapter 5, Putting...