Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Learning with Theano
  • Table Of Contents Toc
Deep Learning with Theano

Deep Learning with Theano

By : Bourez
3.7 (3)
close
close
Deep Learning with Theano

Deep Learning with Theano

3.7 (3)
By: Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (15 chapters)
close
close
14
Index

Classification loss function

The loss function is an objective function to minimize during training to get the best model. Many different loss functions exist.

In a classification problem, where the target is to predict the correct class among k classes, cross-entropy is commonly used as it measures the difference between the real probability distribution, q, and the predicted one, p, for each class:

Classification loss function

Here, i is the index of the sample in the dataset, n is the number of samples in the dataset, and k is the number of classes.

While the real probability Classification loss function of each class is unknown, it can simply be approximated in practice by the empirical distribution, that is, randomly drawing a sample out of the dataset in the dataset order. The same way, the cross-entropy of any predicted probability, p, can be approximated by the empirical cross-entropy:

Classification loss function

Here, Classification loss function is the probability estimated by the model for the correct class of example Classification loss function.

Accuracy and cross-entropy both evolve in the same direction but measure...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Deep Learning with Theano
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon