Book Image

Python Data Analysis - Second Edition

By : Ivan Idris
Book Image

Python Data Analysis - Second Edition

By: Ivan Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (22 chapters)
Python Data Analysis - Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Key Concepts
Online Resources

ARMA models


ARMA models are often used to forecast a time series. These models combine autoregressive and moving average models (see http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model). In moving average models, we assume that a variable is the sum of the mean of the time series and a linear combination of noise components.

Note

The autoregressive and moving average models can have different orders. In general, we can define an ARMA model with p autoregressive terms and q moving average terms as follows:

In the preceding formula, just like in the autoregressive model formula, we have a constant and a white noise component; however, we try to fit the lagged noise components as well.

Fortunately, it's possible to use the statsmodelssm.tsa.ARMA() routine for this analysis. Fit the data to an ARMA(10,1) model as follows:

model = sm.tsa.ARMA(df, (10,1)).fit() 

Perform a forecast (statsmodels uses strings a lot):

prediction = model.predict('1975', str(years[-1]), dynamic...