Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning Solutions
  • Table Of Contents Toc
Machine Learning Solutions

Machine Learning Solutions

By : Jalaj Thanaki
4.6 (5)
close
close
Machine Learning Solutions

Machine Learning Solutions

4.6 (5)
By: Jalaj Thanaki

Overview of this book

Machine learning (ML) helps you find hidden insights from your data without the need for explicit programming. This book is your key to solving any kind of ML problem you might come across in your job. You’ll encounter a set of simple to complex problems while building ML models, and you'll not only resolve these problems, but you’ll also learn how to build projects based on each problem, with a practical approach and easy-to-follow examples. The book includes a wide range of applications: from analytics and NLP, to computer vision domains. Some of the applications you will be working on include stock price prediction, a recommendation engine, building a chat-bot, a facial expression recognition system, and many more. The problem examples we cover include identifying the right algorithm for your dataset and use cases, creating and labeling datasets, getting enough clean data to carry out processing, identifying outliers, overftting datasets, hyperparameter tuning, and more. Here, you'll also learn to make more timely and accurate predictions. In addition, you'll deal with more advanced use cases, such as building a gaming bot, building an extractive summarization tool for medical documents, and you'll also tackle the problems faced while building an ML model. By the end of this book, you'll be able to fine-tune your models as per your needs to deliver maximum productivity.
Table of Contents (19 chapters)
close
close
Machine Learning Solutions
Foreword
Contributors
Preface
1
List of Cheat Sheets
3
Index

Chapter 10. Face Recognition and Face Emotion Recognition

In the previous chapter, we looked at how to detect objects such as a car, chair, cat, and dog, using Convolutional Neural Networks and the YOLO (You Only Look Once) algorithm. In this chapter, we will be detecting human faces. Apart from that, we will be looking at expressions of the human face, such as a human face seeming happy, neutral, sad, and so on. So, this chapter will be interesting, because we are going to focus on some of the latest techniques of face detection and face emotion recognition. We are dividing this chapter into two parts:

  • Face detection

  • Face emotion recognition

First, we will cover how face detection works, and after that, we will move on to the face emotion recognition part. In general, we will cover the following topics in this chapter:

  • Introducing the problem statement

  • Setting up the coding environment

  • Understanding the concepts of face recognition

  • Approaches for implementing face recognition

  • Understanding the...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning Solutions
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon