Book Image

Jupyter Cookbook

By : Dan Toomey
Book Image

Jupyter Cookbook

By: Dan Toomey

Overview of this book

Jupyter has garnered a strong interest in the data science community of late, as it makes common data processing and analysis tasks much simpler. This book is for data science professionals who want to master various tasks related to Jupyter to create efficient, easy-to-share, scientific applications. The book starts with recipes on installing and running the Jupyter Notebook system on various platforms and configuring the various packages that can be used with it. You will then see how you can implement different programming languages and frameworks, such as Python, R, Julia, JavaScript, Scala, and Spark on your Jupyter Notebook. This book contains intuitive recipes on building interactive widgets to manipulate and visualize data in real time, sharing your code, creating a multi-user environment, and organizing your notebook. You will then get hands-on experience with Jupyter Labs, microservices, and deploying them on the web. By the end of this book, you will have taken your knowledge of Jupyter to the next level to perform all key tasks associated with it.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Drawing a Julia histogram using Gadfly


In this example, we produce a histogram using Gadfly.

How to do it...

We can use this small script:

using Gadfly
srand(111)
plot(x=randn(77), Geom.histogram(bincount=10))

That produces this plot:

How it works...

We are using another part of Gadfly. In this case, we are selecting one of the geometric shapes of the histogram. Gadfly has quite a variety of shapes to choose from.

We tell Gadfly to break up the data into 10 bins for the histogram. For the example, we are generating 113 data points.