Book Image

Hands-On Artificial Intelligence for Beginners

By : Patrick D. Smith, David Dindi
Book Image

Hands-On Artificial Intelligence for Beginners

By: Patrick D. Smith, David Dindi

Overview of this book

Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications.
Table of Contents (15 chapters)

Fully connected layers

The fully connected layer of a CNN works in the same manner as that of a vanilla feedforward network. This layer maps the outputs extracted from the image to the outputs that we desire from the network, such as a label for an image:

In the preceding diagram, our inputs are represented by the blue nodes, which are fed into the first convolutional layer, A. We then have a max pooling layer, a second convolutional layer, and finally the fully connected layer, which transforms our output into human– readable output. As with vanilla feedforward networks, we typically use a cross-entropy loss function for classification tasks.