Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Intelligent Projects Using Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Intelligent Projects Using Python

Intelligent Projects Using Python

By : Pattanayak
5 (3)
close
close
Intelligent Projects Using Python

Intelligent Projects Using Python

5 (3)
By: Pattanayak

Overview of this book

This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle.
Table of Contents (12 chapters)
close
close

Customer support on Twitter

Now that we have some idea of how to build a chatbot using a recurrent neural network, we will build a chatbot using the customer service responses of 20 big brands to tweets posted by customers. The dataset twcs.zip can be located at https://www.kaggle.com/thoughtvector/customer-support-on-twitter. Each tweet is identified by the tweet_id and the tweet content is in the text field. The tweets posted by the customers can be identified by the in_response_to_tweet_id field. This should contain null values for customer tweets. For customer service tweets, this in_response_to_tweet_id field should point to the customer tweet_id to which this tweet is directed.

Creating data for training the chatbot

...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Intelligent Projects Using Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon