Book Image

Bayesian Analysis with Python - Second Edition

By : Osvaldo Martin
4.5 (2)
Book Image

Bayesian Analysis with Python - Second Edition

4.5 (2)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
9
Where To Go Next?

Hierarchical linear regression

In the previous chapter, we learned about the rudiments of hierarchical models. We can apply this concept to linear regression as well. This allows models to deal with inferences at the group level and estimations above the group level. As we already saw, this is done by including hyperpriors.

We are going to create eight related data groups, including one group with a single data point:

N = 20
M = 8
idx = np.repeat(range(M-1), N)
idx = np.append(idx, 7)
np.random.seed(314)

alpha_real = np.random.normal(2.5, 0.5, size=M)
beta_real = np.random.beta(6, 1, size=M)
eps_real = np.random.normal(0, 0.5, size=len(idx))

y_m = np.zeros(len(idx))
x_m = np.random.normal(10, 1, len(idx))
y_m = alpha_real[idx] + beta_real[idx] * x_m + eps_real

_, ax = plt.subplots(2, 4, figsize=(10, 5), sharex=True, sharey=True)
ax = np.ravel(ax)
j, k = 0, N
for i in range(M):
ax[i].scatter...