Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Learning with PyTorch Quick Start Guide
  • Table Of Contents Toc
Deep Learning with PyTorch Quick Start Guide

Deep Learning with PyTorch Quick Start Guide

By : David Julian
3.3 (3)
close
close
Deep Learning with PyTorch Quick Start Guide

Deep Learning with PyTorch Quick Start Guide

3.3 (3)
By: David Julian

Overview of this book

PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease.
Table of Contents (8 chapters)
close
close

Benchmarking models

Benchmarking and evaluation are core to the success of any deep learning exploration. We will develop some simple code to evaluate two key performance measures: the accuracy and the training time. We will use the following model template:

This model is the most common and basic linear template for solving MNIST. You can see we initialize each layer, in theinit method, by creating a class variable that is assigned to a PyTorch nn object. Here, we initialize two linear functions and a ReLU function. The nn.Linear function takes an input size of 28*28 or 784. This is the size of each of the training images. The output channels or the width of the network are set to 100. This can be set to anything, and in general a higher number will give better performance within the constraints of computing resources and the tendency for wider networks to overfit training data...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Deep Learning with PyTorch Quick Start Guide
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon