Book Image

Learn MongoDB 4.x

By : Doug Bierer
Book Image

Learn MongoDB 4.x

By: Doug Bierer

Overview of this book

When it comes to managing a high volume of unstructured and non-relational datasets, MongoDB is the defacto database management system (DBMS) for DBAs and data architects. This updated book includes the latest release and covers every feature in MongoDB 4.x, while helping you get hands-on with building a MongoDB database app. You’ll get to grips with MongoDB 4.x concepts such as indexes, database design, data modeling, authentication, and aggregation. As you progress, you’ll cover tasks such as performing routine operations when developing a dynamic database-driven website. Using examples, you’ll learn how to work with queries and regular database operations. The book will not only guide you through design and implementation, but also help you monitor operations to achieve optimal performance and secure your MongoDB database systems. You’ll also be introduced to advanced techniques such as aggregation, map-reduce, complex queries, and generating ad hoc financial reports on the fly. Later, the book shows you how to work with multiple collections as well as embedded arrays and documents, before finally exploring key topics such as replication, sharding, and security using practical examples. By the end of this book, you’ll be well-versed with MongoDB 4.x and be able to perform development and administrative tasks associated with this NoSQL database.
Table of Contents (22 chapters)
1
Section 1: Essentials
5
Section 2: Building a Database-Driven Web Application
9
Section 3: Digging Deeper
13
Section 4: Replication, Sharding, and Security in a Financial Environment
14
Working with Complex Documents Across Collections

High availability

Another feature that causes MongoDB to stand out from other database technologies is its ability to ensure high availability through a process known as replication. A server running MongoDB can have copies of its databases duplicated across two more servers. These copies are known as replica sets. Replica sets are organized through an election process whereby the members of the replica vote on which server becomes the primary. Other servers are then assigned the role of secondary

This arrangement not only ensures that the database is continuously available, but that it can also be used by application code by way of read preferences. A read preference tells the replica set which servers in the replica set are preferred. If the read preferences are set less restrictively, then the first server in the set to respond might be able to satisfy the request, thereby implementing a form of parallel process that has the potential to greatly enhance performance. This...