Book Image

Hands-On Natural Language Processing with PyTorch 1.x

By : Thomas Dop
Book Image

Hands-On Natural Language Processing with PyTorch 1.x

By: Thomas Dop

Overview of this book

In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you’ll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you’ll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You’ll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you’ll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you’ll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them.
Table of Contents (14 chapters)
1
Section 1: Essentials of PyTorch 1.x for NLP
7
Section 3: Real-World NLP Applications Using PyTorch 1.x

Neural networks

In our previous examples, we have discussed mainly regressions in the form . We have touched on using polynomials to fit more complex equations such as . However, as we add more features to our model, when to use a transformation of the original feature becomes a case of trial and error. Using neural networks, we are able to fit a much more complex function, y = f(X), to our data, without the need to engineer or transform our existing features. 

Structure of neural networks

When we were learning the optimal value of , which minimized loss in our regressions, this is effectively the same as a one-layer neural network:

Figure 1.10 – One-layer neural network

Here, we take each of our features, , as an input, illustrated here by a node. We wish to learn the parameters, , which are represented as connections in this diagram. Our final sum of all the products between and gives us our final prediction, y:

A neural network...