Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Natural Language Processing with PyTorch 1.x
  • Table Of Contents Toc
Hands-On Natural Language Processing with PyTorch 1.x

Hands-On Natural Language Processing with PyTorch 1.x

By : Dop
close
close
Hands-On Natural Language Processing with PyTorch 1.x

Hands-On Natural Language Processing with PyTorch 1.x

By: Dop

Overview of this book

In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you’ll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you’ll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You’ll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you’ll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you’ll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them.
Table of Contents (14 chapters)
close
close
1
Section 1: Essentials of PyTorch 1.x for NLP
7
Section 3: Real-World NLP Applications Using PyTorch 1.x

Text preprocessing

Textual data can come in a variety of formats and styles. Text may be in a structured, readable format or in a more raw, unstructured format. Our text may contain punctuation and symbols that we don't wish to include in our models or may contain HTML and other non-textual formatting. This is of particular concern when scraping text from online sources. In order to prepare our text so that it can be input into any NLP models, we must perform preprocessing. This will clean our data so that it is in a standard format. In this section, we will illustrate some of these preprocessing steps in more detail.

Removing HTML

When scraping text from online sources, you may find that your text contains HTML markup and other non-textual artifacts. We do not generally want to include these in our NLP inputs for our models, so these should be removed by default. For example, in HTML, the <b> tag indicates that the text following it should be in bold font. However...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Natural Language Processing with PyTorch 1.x
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon