-
Book Overview & Buying
-
Table Of Contents
Applied Unsupervised Learning with Python
By :
In this chapter, we will expand on the basic ideas that we built in Chapter 1, Introduction to Clustering, by surrounding clustering with the concept of similarity. Once again, we will be implementing forms of the Euclidean distance to capture the notion of similarity. It is important to bear in mind that the Euclidean distance just happens to be one of the most popular distance metrics and not the only one! Through these distance metrics, we will expand on the simple neighbor calculations that we explored in the previous chapter by introducing the concept of hierarchy. By using hierarchy to convey clustering information, we can build stronger groupings that make more logical sense.
Change the font size
Change margin width
Change background colour