Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Applied Unsupervised Learning with Python
  • Table Of Contents Toc
Applied Unsupervised Learning with Python

Applied Unsupervised Learning with Python

By : Benjamin Johnston , Aaron Jones , Christopher Kruger
3 (2)
close
close
Applied Unsupervised Learning with Python

Applied Unsupervised Learning with Python

3 (2)
By: Benjamin Johnston , Aaron Jones , Christopher Kruger

Overview of this book

Unsupervised learning is a useful and practical solution in situations where labeled data is not available. Applied Unsupervised Learning with Python guides you in learning the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The book begins by explaining how basic clustering works to find similar data points in a set. Once you are well-versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. Finally, you will be able to put your knowledge to work through interesting activities such as performing a Market Basket Analysis and identifying relationships between different products. By the end of this book, you will have the skills you need to confidently build your own models using Python.
Table of Contents (12 chapters)
close
close
Applied Unsupervised Learning with Python
Preface

Summary


Kernel density estimation is a classic statistical technique that is in the same family of techniques as the histogram. It allows the user to extrapolate out from sample data to make insights and predictions about the population of particular objects or events. This extrapolation comes in the form of a probability density function, which is nice because the results read as likelihoods or probabilities. The quality of this model is dependent on two parameters: the bandwidth value and the kernel function. As discussed, the most crucial component of leveraging kernel density estimation successfully is the setting of an optimal bandwidth. Optimal bandwidths are most frequently identified using grid search cross-validation with pseudo-log-likelihood as the scoring metric. What makes kernel density estimation great is both its simplicity and its applicability to so many fields.

It is routine to find kernel density estimation models in criminology, epidemiology, meteorology, and real estate...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Applied Unsupervised Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon