Book Image

QlikView: Advanced Data Visualization

By : Miguel Angel Garcia, Barry Harmsen, Stephen Redmond, Karl Pover
Book Image

QlikView: Advanced Data Visualization

By: Miguel Angel Garcia, Barry Harmsen, Stephen Redmond, Karl Pover

Overview of this book

QlikView is one of the most flexible and powerful business intelligence platforms around, and if you want to transform data into insights, it is one of the best options you have at hand. Use this Learning Path, to explore the many features of QlikView to realize the potential of your data and present it as impactful and engaging visualizations. Each chapter in this Learning Path starts with an understanding of a business requirement and its associated data model and then helps you create insightful analysis and data visualizations around it. You will look at problems that you might encounter while visualizing complex data insights using QlikView, and learn how to troubleshoot these and other not-so-common errors. This Learning Path contains real-world examples from a variety of business domains, such as sales, finance, marketing, and human resources. With all the knowledge that you gain from this Learning Path, you will have all the experience you need to implement your next QlikView project like a pro. This Learning Path includes content from the following Packt products: • QlikView for Developers by Miguel Ángel García, Barry Harmsen • Mastering QlikView by Stephen Redmond • Mastering QlikView Data Visualization by Karl Pover
Table of Contents (25 chapters)
QlikView: Advanced Data Visualization


We've come to the end of an intense chapter. I hope you have followed the topics and, if not, I highly recommend to go back to read those sections which you found most difficult, so that you learn the concepts at full.

In this chapter, we have learned the importance of having a well-designed data architecture, how to load data from another QlikView document or previously loaded table in RAM, and also data aggregation functions and their uses.

We then learned how to order tables during load, how to calculate fields based on previously read records, how to deal with slowly changing dimensions to incorporate those tables into the associative data model, and finally the general process to perform an incremental load.