Book Image

Hands-On Vision and Behavior for Self-Driving Cars

By : Luca Venturi, Krishtof Korda
Book Image

Hands-On Vision and Behavior for Self-Driving Cars

By: Luca Venturi, Krishtof Korda

Overview of this book

The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers.
Table of Contents (17 chapters)
1
Section 1: OpenCV and Sensors and Signals
5
Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks
12
Section 3: Mapping and Controls

Chapter 10: Steering, Throttle, and Brake Control

In this chapter, you will learn about more methods for controlling the steering, throttle, and brake using techniques from the field of control systems. If you recall Chapter 8, Behavioral Cloning, you learned how to steer a car using a neural network and camera images. While this most closely mimics how a human drives a car, it can be resource-intensive due to the computational needs of neural networks.

There are more traditional and less resource-intensive methods for controlling a vehicle. The most widely used of these is the PID (short for Proportional, Integral, Derivative) controller, which you will implement in CARLA to drive your car around the simulated town.

There is also another method that is widely used in self-driving cars, called the MPC (short for Model Predictive Controller). The MPC focuses on simulating trajectories, calculating the cost of each trajectory, and selecting the trajectory with the minimum cost...