Book Image

Graph Machine Learning

By : Claudio Stamile, Aldo Marzullo, Enrico Deusebio
5 (1)
Book Image

Graph Machine Learning

5 (1)
By: Claudio Stamile, Aldo Marzullo, Enrico Deusebio

Overview of this book

Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You’ll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you’ll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You’ll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.
Table of Contents (15 chapters)
1
Section 1 – Introduction to Graph Machine Learning
4
Section 2 – Machine Learning on Graphs
8
Section 3 – Advanced Applications of Graph Machine Learning

Chapter 1: Getting Started with Graphs

Graphs are mathematical structures that are used for describing relations between entities and are used almost everywhere. For example, social networks are graphs, where users are connected depending on whether one user "follows" the updates of another user. They can be used for representing maps, where cities are linked through streets. Graphs can describe biological structures, web pages, and even the progression of neurodegenerative diseases.

Graph theory, the study of graphs, has received major interest for years, leading people to develop algorithms, identify properties, and define mathematical models to better understand complex behaviors.

This chapter will review some of the concepts behind graph-structured data. Theoretical notions will be presented, together with examples to help you understand some of the more general concepts and put them into practice. In this chapter, we will introduce and use some of the most widely used libraries for the creation, manipulation, and study of the structure dynamics and functions of complex networks, specifically looking at the Python networkx library.

The following topics will be covered in this chapter:

  • Introduction to graphs with networkx
  • Plotting graphs
  • Graph properties
  • Benchmarks and repositories
  • Dealing with large graphs