Book Image

Graph Machine Learning

By : Claudio Stamile, Aldo Marzullo, Enrico Deusebio
5 (1)
Book Image

Graph Machine Learning

5 (1)
By: Claudio Stamile, Aldo Marzullo, Enrico Deusebio

Overview of this book

Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You’ll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you’ll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You’ll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.
Table of Contents (15 chapters)
1
Section 1 – Introduction to Graph Machine Learning
4
Section 2 – Machine Learning on Graphs
8
Section 3 – Advanced Applications of Graph Machine Learning

Learning about data augmentation for graphs

In Chapter 8, Graph Analysis for Credit Card Transactions, we described how graph machine learning can be used to study and automatically detect fraudulent credit card transactions. While describing the use case, we faced two main obstacles:

  • There were too many nodes in the original dataset to handle. As a consequence, the computational cost was too high to be computed. This is why we selected only 20% of the dataset.
  • From the original dataset, we saw that less than 1% of the data had been labeled as fraudulent transactions, while the other 99% of the dataset contained genuine transactions. This is why, during the edge classification task, we randomly subsampled the dataset.

The techniques we used to solve these two obstacles, in general, are not optimal. For graph data, more complex and innovative techniques are needed to solve the task. Moreover, when datasets are highly unbalanced, as we mentioned in Chapter 8, Graph...