Book Image

Graph Machine Learning

By : Claudio Stamile, Aldo Marzullo, Enrico Deusebio
5 (1)
Book Image

Graph Machine Learning

5 (1)
By: Claudio Stamile, Aldo Marzullo, Enrico Deusebio

Overview of this book

Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You’ll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you’ll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You’ll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.
Table of Contents (15 chapters)
1
Section 1 – Introduction to Graph Machine Learning
4
Section 2 – Machine Learning on Graphs
8
Section 3 – Advanced Applications of Graph Machine Learning

The taxonomy of graph embedding machine learning algorithms

A wide variety of methods to generate a compact space for graph representation have been developed. In recent years, a trend has been observed of researchers and machine learning practitioners converging toward a unified notation to provide a common definition to describe such algorithms. In this section, we will be introduced to a simplified version of the taxonomy defined in the paper Machine Learning on Graphs: A Model and Comprehensive Taxonomy (https://arxiv.org/abs/2005.03675).

In this formal representation, every graph, node, or edge embedding method can be described by two fundamental components, named the encoder and the decoder. The encoder (ENC) maps the input into the embedding space, while the decoder (DEC) decodes structural information about the graph from the learned embedding (Figure 2.7).

The framework described in the paper follows an intuitive idea: if we are able to encode a graph such that the...