Book Image

Graph Machine Learning

By : Claudio Stamile, Aldo Marzullo, Enrico Deusebio
5 (1)
Book Image

Graph Machine Learning

5 (1)
By: Claudio Stamile, Aldo Marzullo, Enrico Deusebio

Overview of this book

Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You’ll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you’ll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You’ll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.
Table of Contents (15 chapters)
1
Section 1 – Introduction to Graph Machine Learning
4
Section 2 – Machine Learning on Graphs
8
Section 3 – Advanced Applications of Graph Machine Learning

Graph regularization methods

Shallow embedding methods described in the previous section show how topological information and relations between data points can be encoded and leveraged in order to build more robust classifiers and address semi-supervised tasks. In general terms, network information can be extremely useful in constraining models and enforcing the output to be smooth within neighboring nodes. As we have already seen in previous sections, this idea can be efficiently used in semi-supervised tasks, when propagating the information on neighbor unlabeled nodes.

On the other hand, this can also be used to regularize the learning phase in order to create more robust models that tend to better generalize to unseen examples. Both the label propagation and the label spreading algorithms we have seen previously can be implemented as a cost function to be minimized when we add an additional regularization term. Generally, in supervised tasks, we can write the cost function...