Book Image

The TensorFlow Workshop

By : Matthew Moocarme, Abhranshu Bagchi, Anthony So, Anthony Maddalone
Book Image

The TensorFlow Workshop

By: Matthew Moocarme, Abhranshu Bagchi, Anthony So, Anthony Maddalone

Overview of this book

Getting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level. The breadth of information out there, often written at a very high level and aimed at advanced practitioners, can make getting started even more challenging. If this sounds familiar to you, The TensorFlow Workshop is here to help. Combining clear explanations, realistic examples, and plenty of hands-on practice, it’ll quickly get you up and running. You’ll start off with the basics – learning how to load data into TensorFlow, perform tensor operations, and utilize common optimizers and activation functions. As you progress, you’ll experiment with different TensorFlow development tools, including TensorBoard, TensorFlow Hub, and Google Colab, before moving on to solve regression and classification problems with sequential models. Building on this solid foundation, you’ll learn how to tune models and work with different types of neural network, getting hands-on with real-world deep learning applications such as text encoding, temperature forecasting, image augmentation, and audio processing. By the end of this deep learning book, you’ll have the skills, knowledge, and confidence to tackle your own ambitious deep learning projects with TensorFlow.
Table of Contents (13 chapters)
Preface

Tensor Addition

Tensors can be added together to create new tensors. You will use the example of matrices in this chapter, but the concept can be extended to tensors with any rank. Matrices may be added to scalars, vectors, and other matrices under certain conditions in a process known as broadcasting. Broadcasting refers to the process of array arithmetic on tensors of different shapes.

Two matrices may be added (or subtracted) together if they have the same shape. For such matrix-matrix addition, the resultant matrix is determined by the element-wise addition of the input matrices. The resultant matrix will therefore have the same shape as the two input matrices. You can define the matrix Z = [Zij] as the matrix sum Z = X + Y, where zij = xij + yij and each element in Z is the sum of the same element in X and Y.

Matrix addition is commutative, which means that the order of X and Y does not matter, that is, X + Y = Y + X. Matrix addition is also associative, which ...