-
Book Overview & Buying
-
Table Of Contents
Data Science for Marketing Analytics [Instructor Edition]
By :
"Since you liked this artist, you'll also like their new album," "Customers who bought bread also bought butter," and "1,000 people near you have also ordered this item." Every day, recommendations like these influence customers' shopping decisions, helping them discover new products. Such recommendations are possible thanks to data science techniques that leverage data to create complex models, perform sophisticated tasks, and derive valuable customer insights with great precision. While the use of data science principles in marketing analytics is a proven, cost-effective, and efficient strategy, many companies are still not using these techniques to their full potential. There is a wide gap between the possible and actual usage of these techniques.
This book is designed to teach you skills that will help you contribute toward bridging that gap. It covers a wide range of useful techniques that will allow you to leverage everything data science can do in terms of strategies and decision-making in the marketing domain. By the end of the book, you should be able to successfully create and manage an end-to-end marketing analytics solution in Python, segment customers based on the data provided, predict their lifetime value, and model their decision-making behavior using data science techniques.
You will start your journey by first learning how to clean and prepare data. Raw data from external sources cannot be used directly; it needs to be analyzed, structured, and filtered before it can be used any further. In this chapter, you will learn how to manipulate rows and columns and apply transformations to data to ensure you have the right data with the right attributes. This is an essential skill in a data analyst's arsenal because, otherwise, the outcome of your analysis will be based on incorrect data, thereby making it a classic example of garbage in, garbage out. But before you start working with the data, it is important to understand its nature - in other words, the different types of data you'll be working with.